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On bicyclic graphs with minimal energies
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The energy of a graph is defined as the sum of the absolute values of all the
eigenvalues of the graph. Let G(n) be the class of bicyclic graphs G on n vertices and
containing no disjoint odd cycles of lengths k and / with k +/ = 2 (mod 4). In this
paper, the graphs in G (n) with minimal, second-minimal and third-minimal energies are
determined.
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1. Introduction

Let G be a graph with n vertices and A(G) the adjacency matrix of G. The

characteristic polynomial of G is
$(G. 1) = detQd — A(G)) = D _a;\" ™.
i=0

The roots Ay, Az, ..., A, of ¢(G,A) = 0 are called the eigenvalues of G. Since
A(G) is symmetric, all the eigenvalues of G are real.

The energy of G, denoted E(G), is then defined as E(G) = Y _, [A;]. It is
known that [1] E(G) can be expressed as the Coulson integral formula

1 400 1 [n/2] . . 2 ln/2] . . 2
E(G) = E/ ;hl <Z(_1)102ix21) + Z(—l)’a2i+1x2’+1 dx.
& i=0 j=0

(D

Since the energy of a graph can be used to approximate the total m-electron
energy of the molecule, it has been intensively studied. For a survey of the math-
ematical properties and results on E(G), see the recent review [2].
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Many results on the minimal energy have been obtained for various clas-
ses of graphs, (see, for example, [3-5]). In [6], Caporossi et al. gave the following
conjecture.

Conjecture 1. Connected graphs G with n > 6 vertices, n—1 < e < 2(n—2) edges
and minimum energy are star with e —n+1 additional edges all connected to the
same vertices for e < n + [(n — 7)/2], and bipartite graphs with two vertices on
one side, one of which is connected to all vertices on the other side otherwise.

This conjecture is true when e =n — 1,2(n — 1) [6, Theorem 1], and when
e = n [7]. In this paper, we consider the above conjecture for the case e =n + 1.

A connected graph with n vertices and e = n + 1 edges is called a bicyclic
graph. Let G(n) be the class of bicyclic graphs G with n vertices and containing
no disjoint odd cycles of lengths k and [ with k + 1 = 2 (mod 4). Let S>3 be
the graph formed by joining n — 4 pendant vertices to a vertex of degree three
of the K4 —e, and S** be the graph formed by joining n — 5 pendant vertices to
a vertex of degree three of the complete bipartite graph Kj3. Let />3, §/** be,
respectively, the graph formed from S, $*4 by moving a pendant edge to the
vertex of degree three. See figure 1 for these graphs. Hou [8] has reported that
S44 has the minimal energy among all n-vertex connected bicyclic graphs with at
most one odd cycle. Note that the class of bicyclic graph with n vertices and at
most one odd cycle is a proper subset of G(n). In this paper, we show that S>3,
§4_ 833 have, respectively, minimal, second-minimal and third-minimal energies
in G(n).

§3:3 g4.4

n n

/3,3 14,4
Sﬂ Sﬂ

Figure 1. Graphs 33, s*4, 533 and s44.
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2. Main result

Let G be a graph with characteristic polynomial ¢(G,2)= Y ' ja;A""".
Sachs theorem states that [1,9] for i > 1,

a; = Z (— 1)P$) )

Sel;

where L; denotes the set of Sachs graphs of G with i vertices, that is, the graphs
in which every component is either a K, or a cycle, p(S) is the number of com-
ponents of S and ¢(S) is the number of cycles contained in S. In addition ay = 1.
Let by (G) = (=1)ay and by 1(G) = (=1D)as4 for 0 < i < |n/2]. Clearly,
bo(G) = 1 and b,(G) equals the number of edges of G.

A graph G contains H means that G contains a subgraph that is isomor-
phic to H.

Lemma 1. (1) If G € G(n), then by;(G) > 0 for 1 <i < |n/2].
(1) If G € G(n) contains K4 — e, then bzl+1(G) > 0for1<i<|n/2].

Proof. Let L; be the set of Sachs graphs of G with i vertices. Let L(I) be the
set of graphs with no cycles in L;, and L(z) L; \L(l) Note that G € G(n) has
exactly two or three distinct cycles, and at most two odd cycles.

(1) By Sachs theorem,

by (G) = Z (—1)PS+ige(®)

SeLl,;

If G has at most one odd cycle, then [10] b5;(G) > 0. So we need only to
consider the case when G € G(n) has exactly two odd cycles. If every S in
Ly; has no cycles, then p(S) =i, by (G) = Zs Lml > 0. Suppose some
So in Ly; contains at least one cycle C; with length s. If s is odd, then S
contains exactly two disjoint odd cycles with lengths, say, s and ¢. Since
G € G(n), we have s+t =0 (mod 4), p(S)+i =24+[2i —(s+1)]/2+i =
0 (mod 2), and then

bi(G)= Y 144 120

seLy seLy
If s is even, then it is easy to see that |Lg)| 2|Lg)| and so

bi(G) =Y 1+ Y 2(=1"' >0

) @)
SeL,; SeLy;
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(i) If G € G(n) contains K4 — e, then LS.ZF] =@, any S € Lg)ﬂ must contain

a unique triangle, p(S) =1+ Qi +1—-3)/2=1i,¢(S) =1, and so

bys(G)=2 ) 1>0. D
SeLiy,

In view of lemma 1, a quasi-order relation is introduced (see [3]).

(1) Let G, G, be the graphs of G(n) containing K4 —e. If b;(Gy) = b;(G3)
holds for all i > 0, we say that G is not less than G,, written as G| >
G,.

(ii) Let G| be any graph in G(n), and G, = S**. Similarly, we also write
G > Gy = S if by (G1) > by (G») holds for all i > 0.

In either case, if G; > G, and there exists on i such that b;(G;) > b;(G»),
then we write G; > G,. Obvious, from (1) and lemma 1, we have the following
increasing property on E:

G > Gy = E(G)) > E(Gy). (2)

Lemma 2. Let G be a graph with n vertices and let uv be a pendant edge of G
with pendant vertex v. Then for 2 <i < n,

bi(G) = bi(G —v) +bi—2(G —u —v).
Proof. Since uv is a pendant edge of G with pendant vertex v, we have [9]
(G, L) =rp(G —v,A) —d(G —u—v,1),

from which the result follows easily. o

Let m(G,2) be the number of 2-matchings of a graph G. Obviously,
m(P,,2) = (n—2)(n—3)/2 and m(C,,2) =n(n —3)/2.

Lemma 3. Let G be any graph. Then by(G) = m(G, 2)—2I, where [ is the number
of quadrangles in G.

Proof. By Sachs theorem,

bi(G) = | ) (=PI

Sely

=m(G,2) -2l

since any S € Ly is either 2K, or a quadrangle. a
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Lemma 4. Let G € G(n). If by(G) > bg(S**) = 3n — 15, then G > S*4.

Proof. It is easy to see that by(G) = by(S+*), by(G) =by(S**) =n+1, by(S**) =
3n — 15, and b;(S**) =0 for i = 1,3 or i > 5. Since bs(G) > 3n — 15, we have
G >~ S+ o

Lemma 5. If G € G(n) does not contain K4 — e and G % S**, then G > S*4.

Proof. Since G € G(n), G has either two or three distinct cycles. If G has three
cycles, then any two must share common edges. We may choose two cycles of
lengths of a and b with + common edges such that a — ¢t > t,b—t > ¢t. If G
has exactly two cycles, suppose the lengths of the two cycles are a and b. Then
in any case we choose two cycles C, and C, with lengths a and b, respectively.
We will prove that by(G) > by(S**)(= 3n — 15).

Case 1. C, and C;, have no common vertices. Then n —a —b > 0. By induc-
tiononn—a—>b. If n—a—b=0, then by lemma 3,

b4(G) = m(G,2) — 4
=m(Cy,2) +m(Cp,2) +ab+ (@a+b—4)—4
= 3[(a +b)* — (a +b) — 16]

and so
1
bs(G) — (3n — 15) > 5(n2 —Tn+14) > 0.

It follows that b4(G) > 3n — 15.

Suppose it is true for all graphs in this case with n —a —b < p (p = 1),
and suppose n —a — b = p.

Subcase 1.1. There is no pendant edges in G. Then C, connects C, by a
path with length p 4+ 1. By lemma 3,

ba(G) 2 m(G,2) —4
=m(Cy,2) + m(Cp,2) + m(Ppi2,2) + (@ —=2)(n+1—a)+2(n —a)
+b -2 n+1—a—-b)+2(n—a—>b)—4
=1i[n*—n+2a+b>—16]+a—4

and so
1
bs(G) — 3n —15) > E[nz—7n+2(a+b)2+2a+6] >0

and hence b4(G) > 3n — 15.
Subcase 1.2. uv is a pendant edge of G with pendant vertex v. By lemma 2,
bs(G) = ba(G — v) + b2(G —u — v),
ba(Sy) = ba(S, %) + ba(K ).



428 J. Zhang and B. Zhou! On bicyclic graphs with minimal energies

By induction hypothesis, b4(G—v) > b4(S:f1). Since G contains no K4—e, by(G—
u —v) >3 =by(Ky3). We have by(G) > bs(SH*) = 3n — 15.
By combining subcases 1.1 and 1.2, we have prove that in case 1, b4(G) >
by(S**) = 3n — 15.
Case 2. C, and C, have at least one common vertex and ¢ (¢ > 0) common
edges. Then n —a — b+t > —1. We use induction on n —a — b + ¢.
If n—a—b+t = —1, then G contains no vertices except vertices in the two
cycles. There are four subcases.
Subcase 2.1. t =0. Then n =a + b — 1. By lemma 3
ba(G) = m(G,2) — 4
=m(Cy,2) + m(Cp,2)+alb—2)+2(a—2)—4
= i[(a + b)* — 3(a + b) — 16]

and since a + b > 6, we have
1
by(G) — 3n — 15) > E[(a +b)? — 9(a + b) +20] > 0.

Subcase 2.2. + = 1. Then n = a + b — 2. If G contains quadrangles, then
either n = 6,

by(G) =17 > 3 =bs(Sg"
orn=b+2,b+#4,

by(G)=b—2+1b+2)(b -1 -2
>3(b+2) —15
= bu(S)H. 2).

Suppose G does not contain quadrangles. By lemma 3,

by(G) =m(G,2)
=a+b—-6+m(Cosp2,2),
=a+b—6+1(a+b—-2(a+b-75)]

Note that G does not contain quadrangles or K4 — e. We have a + b > 6 and hence
1
bs(G) — (3n —15) = 5[(a + b)? — 11(a + b) + 40] > 0.

Subcase 2.3. + = 2. Then n = a + b — 3. If G contains a quadrangle, let
a =4. Then b # 4 since G 2 S**. By lemma 3,

bsy(G) =2(b—-2)+bb—-3)/2-2

and so

1
by(G) — by(SH) = E(bZ —5b+12) > 0.
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If G does not contain quadrangles, then by lemma 3
by(G) =m(G,2) =2(a+b —6) + m(Cpyp—s,2)
and so
by(G) — by(SHH) = %[(a +b)* —13(a + b) + 52)] > 0.

Subcase 2.4. t > 3. Note that @, b > 2¢t. Then n =a+b—1t—1, by lemma 3
bs(G) =m(G,2)
=m(Py1,2)+2(a+b—2t-2)
+(@ —2)(a+b—2t) + m(Cuyp-2,2)

and so
1
by(G) — ba(SH) = E[(a +b)? — (2t +9)(a + b) + 1> + 91 + 30]

:%[(a+b)—(t+3)][(a+b)—(t+6)]+6>0.

By combining subcases 2.1-2.4, we have shown that in case 2, b4(G) >
ba(S**) if n —a — b+t = —1. Suppose that it is true forn —a —b +1 < p
(p 20), and that n —a — b+t = p. Then G must contain a pendant edges uv
with v a pendant vertex. By lemma 2,

b4(G) = ba(G — v) + b2(G —u —v),

ba(Sy*) = ba(S; ) + ba(K 1 3).
By induction hypothesis, b4 (G — v) > b4(S;‘fl). Since G does not contain K4 —e,
by(G—u—v) > 3 =by(K13). S0 bs(G) > ba(S>% ). Now we have have shown

a+b—t—1
that in case 2, b4(G) > b4(Si*4) + 3n — 15.
By combining cases 1 and 2, and by lemma 4, this theorem follows. o

Similarly, we have

Lemma 6. If G € G(n) does not contain K4 — e, and G % S§** 5§44, then
G > Si44,

Lemma 7. If G contains K4 — e, and G % S>3, then G >~ S2°.
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Proof.  We will show b;(G) > b;(5>%) using induction on n. If n = 4, the theo-
rem holds. Suppose it is true for n < p (p > 5), and let n = p. Then G contains
a pendant edge uv with pendant vertex v. By lemma 2,

bi(G) =bi(G —v)+bi 2(G —u—v),
bi(S>?) = bi(S)7) + bi_a(P3).

By induction hypothesis, b;(G —v) > b; (S3 31) On the other hand, b;_»(G —u—v)
> b;_»(P3) since
1, i—2=0,
bi »(G—u—v)y=13>2, i—2=2,
>0, otherwise
and
1, i—-2=0,
bl—Z(P3) = 2a i _2=27
0, otherwise.

Thus b;(G) > b;(S>?) holds for all i. Since G % S>3, from the above argument,
we see that b, (G) > b;,(S>+?) for some ip. Now the theorem follows. O

Similarly, we have

Lemma 8. If G € G(n) contains K4 — e, and G % §>3, 53, then G > §>3.

n °*>>n

Lemma 9. E(S**) > E(573) > E(S** > E(S>?) for n > 9.

Proof. Note that

PSP, 0) = A" — (n+ DA2 —4a" 3 4 (3n — 13)A" 4,
G(SA4,0) = 2" — (n+ DA + (4n — 2D)a4,

PS> 2) =" — (n+ D2 —4n7 4 (2n — B)A" T,
PSP 0) =" — (n+ DA 24 (Bn — 15)am 4,

From equation (1), we have

+00
| [1+ (n+ Dx? + (@dn = 2Dx*P
E(S*4) — E(§33 =—/—
G =BG =2 [ P+ Dx 2+ Gn— B3P+ 1656
0

Let
fx) =14+ n+ Dx?+ 4n — 21)x*P?
—[14+ @+ Dx~2+ Gn —13)x*? — 16x°
= —8)(Tn —34)x® + 2% — Tn + 16)x° + 2(n — 8)x*.
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Then f(x) > 0 for n > 9. So E(S'**) > E(S3). Similarly, we may get E (S >
E(S*) > E(S533). =

Combining lemmas 5-9, and using the increasing property (2) on the
energy, we obtain the following main result of this paper.

Theorem 1. S>3, S**, 533 have, respectively, minimal, second-minimal and third-
minimal energies in G(n).
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