# On bicyclic graphs with minimal energies

Jianbin Zhang and Bo Zhou\*

Department of Mathematics, South China Normal University, Guangzhou 510631, People's Republic of China E-mail: zhoubo@scnu.edu.cn

Received 13 September 2004; revised 27 September 2004

The energy of a graph is defined as the sum of the absolute values of all the eigenvalues of the graph. Let G(n) be the class of bicyclic graphs G on *n* vertices and containing no disjoint odd cycles of lengths *k* and *l* with  $k + l \equiv 2 \pmod{4}$ . In this paper, the graphs in G(n) with minimal, second-minimal and third-minimal energies are determined.

**KEY WORDS:** energy, bicyclic graph, characteristic polynomial, eigenvalue

AMS subject classification: 05C50, 05C35

### 1. Introduction

Let G be a graph with n vertices and A(G) the adjacency matrix of G. The characteristic polynomial of G is

$$\phi(G,\lambda) = \det(\lambda I - A(G)) = \sum_{i=0}^{n} a_i \lambda^{n-i}.$$

The roots  $\lambda_1, \lambda_2, \ldots, \lambda_n$  of  $\phi(G, \lambda) = 0$  are called the eigenvalues of G. Since A(G) is symmetric, all the eigenvalues of G are real.

The energy of G, denoted E(G), is then defined as  $E(G) = \sum_{i=0}^{n} |\lambda_i|$ . It is known that [1] E(G) can be expressed as the Coulson integral formula

$$E(G) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \frac{1}{x^2} \ln\left[\left(\sum_{i=0}^{\lfloor n/2 \rfloor} (-1)^i a_{2i} x^{2i}\right)^2 + \left(\sum_{j=0}^{\lfloor n/2 \rfloor} (-1)^i a_{2i+1} x^{2i+1}\right)^2\right] \mathrm{d}x.$$
(1)

Since the energy of a graph can be used to approximate the total  $\pi$ -electron energy of the molecule, it has been intensively studied. For a survey of the mathematical properties and results on E(G), see the recent review [2].

\*Corresponding author.

Many results on the minimal energy have been obtained for various classes of graphs, (see, for example, [3–5]). In [6], Caporossi et al. gave the following conjecture.

**Conjecture 1.** Connected graphs *G* with  $n \ge 6$  vertices,  $n-1 \le e \le 2(n-2)$  edges and minimum energy are star with e-n+1 additional edges all connected to the same vertices for  $e \le n + \lfloor (n-7)/2 \rfloor$ , and bipartite graphs with two vertices on one side, one of which is connected to all vertices on the other side otherwise.

This conjecture is true when e = n - 1, 2(n - 1) [6, Theorem 1], and when e = n [7]. In this paper, we consider the above conjecture for the case e = n + 1.

A connected graph with *n* vertices and e = n + 1 edges is called a bicyclic graph. Let G(n) be the class of bicyclic graphs G with *n* vertices and containing no disjoint odd cycles of lengths *k* and *l* with  $k + l \equiv 2 \pmod{4}$ . Let  $S_n^{3,3}$  be the graph formed by joining n - 4 pendant vertices to a vertex of degree three of the  $K_4 - e$ , and  $S_n^{4,4}$  be the graph formed by joining n - 5 pendant vertices to a vertex of degree three of the complete bipartite graph  $K_{2,3}$ . Let  $S_n'^{3,3}$ ,  $S_n'^{4,4}$  be, respectively, the graph formed from  $S_n^{3,3}$ ,  $S_n^{4,4}$  by moving a pendant edge to the vertex of degree three. See figure 1 for these graphs. Hou [8] has reported that  $S_n^{4,4}$  has the minimal energy among all *n*-vertex connected bicyclic graphs with at most one odd cycle is a proper subset of G(n). In this paper, we show that  $S_n^{3,3}$ ,  $S_n^{4,4}$ ,  $S_n'^{3,3}$  have, respectively, minimal, second-minimal and third-minimal energies in G(n).



Figure 1. Graphs  $S_n^{3,3}$ ,  $S_n^{4,4}$ ,  $S_n^{'3,3}$  and  $S_n^{'4,4}$ .

## 2. Main result

Let G be a graph with characteristic polynomial  $\phi(G, \lambda) = \sum_{i=0}^{n} a_i \lambda^{n-i}$ . Sachs theorem states that [1,9] for  $i \ge 1$ ,

$$a_i = \sum_{S \in L_i} (-1)^{p(S)} 2^{c(S)},$$

where  $L_i$  denotes the set of Sachs graphs of G with *i* vertices, that is, the graphs in which every component is either a  $K_2$  or a cycle, p(S) is the number of components of S and c(S) is the number of cycles contained in S. In addition  $a_0 = 1$ . Let  $b_{2i}(G) = (-1)^i a_{2i}$  and  $b_{2i+1}(G) = (-1)^i a_{2i+1}$  for  $0 \le i \le \lfloor n/2 \rfloor$ . Clearly,  $b_0(G) = 1$  and  $b_2(G)$  equals the number of edges of G.

A graph G contains H means that G contains a subgraph that is isomorphic to H.

**Lemma 1.** (i) If  $G \in G(n)$ , then  $b_{2i}(G) \ge 0$  for  $1 \le i \le \lfloor n/2 \rfloor$ . (ii) If  $G \in G(n)$  contains  $K_4 - e$ , then  $b_{2i+1}(G) \ge 0$  for  $1 \le i \le \lfloor n/2 \rfloor$ .

*Proof.* Let  $L_i$  be the set of Sachs graphs of G with *i* vertices. Let  $L_i^{(1)}$  be the set of graphs with no cycles in  $L_i$ , and  $L_i^{(2)} = L_i \setminus L_i^{(1)}$ . Note that  $G \in G(n)$  has exactly two or three distinct cycles, and at most two odd cycles.

(i) By Sachs theorem,

$$b_{2i}(G) = \sum_{S \in L_{2i}} (-1)^{p(S)+i} 2^{c(S)}$$

If G has at most one odd cycle, then  $[10] b_{2i}(G) \ge 0$ . So we need only to consider the case when  $G \in G(n)$  has exactly two odd cycles. If every S in  $L_{2i}$  has no cycles, then p(S) = i,  $b_{2k}(G) = \sum_{S \in L_{2i}^{(1)}} 1 \ge 0$ . Suppose some  $S_0$  in  $L_{2i}$  contains at least one cycle  $C_s$  with length s. If s is odd, then  $S_0$  contains exactly two disjoint odd cycles with lengths, say, s and t. Since  $G \in G(n)$ , we have  $s + t \equiv 0 \pmod{4}$ ,  $p(S) + i = 2 + [2i - (s + t)]/2 + i \equiv 0 \pmod{2}$ , and then

$$b_{2i}(G) = \sum_{S \in L_{2i}^{(1)}} 1 + 4 \sum_{S \in L_{2i}^{(2)}} 1 \ge 0.$$

If s is even, then it is easy to see that  $|L_{2i}^{(1)}| \ge 2|L_{2i}^{(2)}|$  and so

$$b_{2i}(G) = \sum_{S \in L_{2i}^{(1)}} 1 + \sum_{S \in L_{2i}^{(2)}} 2(-1)^{s-1} \ge 0.$$

(ii) If  $G \in G(n)$  contains  $K_4 - e$ , then  $L_{2i+1}^{(1)} = \emptyset$ , any  $S \in L_{2i+1}^{(2)}$  must contain a unique triangle, p(S) = 1 + (2i + 1 - 3)/2 = i, c(S) = 1, and so

$$b_{2i+1}(G) = 2 \sum_{S \in L_{2i+1}^{(2)}} 1 \ge 0.$$

In view of lemma 1, a quasi-order relation is introduced (see [3]).

- (i) Let  $G_1, G_2$  be the graphs of G(n) containing  $K_4 e$ . If  $b_i(G_1) \ge b_i(G_2)$  holds for all  $i \ge 0$ , we say that  $G_1$  is not less than  $G_2$ , written as  $G_1 \succeq G_2$ .
- (ii) Let  $G_1$  be any graph in G(n), and  $G_2 = S_n^{4,4}$ . Similarly, we also write  $G_1 \succeq G_2 = S_n^{4,4}$ , if  $b_{2i}(G_1) \ge b_{2i}(G_2)$  holds for all  $i \ge 0$ .

In either case, if  $G_1 \succeq G_2$  and there exists on *i* such that  $b_i(G_1) > b_i(G_2)$ , then we write  $G_1 \succ G_2$ . Obvious, from (1) and lemma 1, we have the following increasing property on *E*:

$$G_1 \succ G_2 \Rightarrow E(G_1) \succ E(G_2).$$
 (2)

**Lemma 2.** Let G be a graph with n vertices and let uv be a pendant edge of G with pendant vertex v. Then for  $2 \le i \le n$ ,

$$b_i(G) = b_i(G - v) + b_{i-2}(G - u - v).$$

*Proof.* Since uv is a pendant edge of G with pendant vertex v, we have [9]

$$\phi(G,\lambda) = \lambda \phi(G-v,\lambda) - \phi(G-u-v,\lambda),$$

from which the result follows easily.

Let m(G, 2) be the number of 2-matchings of a graph G. Obviously,  $m(P_n, 2) = (n-2)(n-3)/2$  and  $m(C_n, 2) = n(n-3)/2$ .

**Lemma 3.** Let G be any graph. Then  $b_4(G) = m(G, 2) - 2l$ , where l is the number of quadrangles in G.

*Proof.* By Sachs theorem,

$$b_4(G) = \left| \sum_{S \in L_4} (-1)^{p(S)} 2^{c(S)} \right| = m(G, 2) - 2l$$

since any  $S \in L_4$  is either  $2K_2$  or a quadrangle.

.

**Lemma 4.** Let  $G \in G(n)$ . If  $b_4(G) > b_4(S_n^{4,4}) = 3n - 15$ , then  $G \succ S_n^{4,4}$ .

*Proof.* It is easy to see that  $b_0(G) = b_0(S_n^{4,4}), b_2(G) = b_2(S_n^{4,4}) = n + 1, b_4(S_n^{4,4}) = 3n - 15$ , and  $b_i(S_n^{4,4}) = 0$  for i = 1, 3 or  $i \ge 5$ . Since  $b_4(G) > 3n - 15$ , we have  $G \succ S_n^{4,4}$ .

**Lemma 5.** If  $G \in G(n)$  does not contain  $K_4 - e$  and  $G \cong S_n^{4,4}$ , then  $G \succ S_n^{4,4}$ .

*Proof.* Since  $G \in G(n)$ , G has either two or three distinct cycles. If G has three cycles, then any two must share common edges. We may choose two cycles of lengths of a and b with t common edges such that  $a - t \ge t, b - t \ge t$ . If G has exactly two cycles, suppose the lengths of the two cycles are a and b. Then in any case we choose two cycles  $C_a$  and  $C_b$  with lengths a and b, respectively. We will prove that  $b_4(G) > b_4(S_n^{4,4}) (= 3n - 15)$ .

Case 1.  $C_a$  and  $C_b$  have no common vertices. Then  $n-a-b \ge 0$ . By induction on n-a-b. If n-a-b=0, then by lemma 3,

$$b_4(G) \ge m(G, 2) - 4$$
  
=  $m(C_a, 2) + m(C_b, 2) + ab + (a + b - 4) - 4$   
=  $\frac{1}{2}[(a + b)^2 - (a + b) - 16]$ 

and so

$$b_4(G) - (3n - 15) \ge \frac{1}{2}(n^2 - 7n + 14) > 0.$$

It follows that  $b_4(G) > 3n - 15$ .

Suppose it is true for all graphs in this case with n - a - b < p ( $p \ge 1$ ), and suppose n - a - b = p.

Subcase 1.1. There is no pendant edges in G. Then  $C_a$  connects  $C_b$  by a path with length p + 1. By lemma 3,

$$b_4(G) \ge m(G, 2) - 4 = m(C_a, 2) + m(C_b, 2) + m(P_{p+2}, 2) + (a-2)(n+1-a) + 2(n-a) + (b-2)(n+1-a-b) + 2(n-a-b) - 4 = \frac{1}{2}[n^2 - n + 2(a+b)^2 - 16] + a - 4$$

and so

$$b_4(G) - (3n - 15) \ge \frac{1}{2}[n^2 - 7n + 2(a + b)^2 + 2a + 6] > 0$$

and hence  $b_4(G) > 3n - 15$ .

Subcase 1.2. uv is a pendant edge of G with pendant vertex v. By lemma 2,

$$b_4(G) = b_4(G - v) + b_2(G - u - v),$$
  

$$b_4(S_n^{4,4}) = b_4(S_{n-1}^{4,4}) + b_2(K_{1,3}).$$

By induction hypothesis,  $b_4(G-v) \ge b_4(S_{n-1}^{4,4})$ . Since G contains no  $K_4-e$ ,  $b_2(G-u-v) > 3 = b_2(K_{1,3})$ . We have  $b_4(G) > b_4(S_n^{4,4}) = 3n - 15$ .

By combining subcases 1.1 and 1.2, we have prove that in case 1,  $b_4(G) > b_4(S_n^{4,4}) = 3n - 15$ .

Case 2.  $C_a$  and  $C_b$  have at least one common vertex and t ( $t \ge 0$ ) common edges. Then  $n - a - b + t \ge -1$ . We use induction on n - a - b + t.

If n-a-b+t = -1, then G contains no vertices except vertices in the two cycles. There are four subcases.

Subcase 2.1. t = 0. Then n = a + b - 1. By lemma 3

$$b_4(G) \ge m(G, 2) - 4$$
  
=  $m(C_a, 2) + m(C_b, 2) + a(b-2) + 2(a-2) - 4$   
=  $\frac{1}{2}[(a+b)^2 - 3(a+b) - 16]$ 

and since  $a + b \ge 6$ , we have

$$b_4(G) - (3n - 15) \ge \frac{1}{2}[(a + b)^2 - 9(a + b) + 20] > 0.$$

Subcase 2.2. t = 1. Then n = a + b - 2. If G contains quadrangles, then either n = 6,

$$b_4(G) = 7 > 3 = b_4(S_6^{4,4})$$

or  $n = b + 2, b \neq 4$ ,

$$b_4(G) = b - 2 + \frac{1}{2}(b+2)(b-1) - 2$$
  
> 3(b+2) - 15  
= b\_4(S\_{b+2}^{4,4}, 2).

Suppose G does not contain quadrangles. By lemma 3,

$$b_4(G) = m(G, 2)$$
  
=  $a + b - 6 + m(C_{a+b-2}, 2),$   
=  $a + b - 6 + \frac{1}{2}[(a + b - 2)(a + b - 5)].$ 

Note that *G* does not contain quadrangles or  $K_4 - e$ . We have  $a + b \ge 6$  and hence

$$b_4(G) - (3n - 15) = \frac{1}{2}[(a + b)^2 - 11(a + b) + 40] > 0.$$

Subcase 2.3. t = 2. Then n = a + b - 3. If G contains a quadrangle, let a = 4. Then  $b \neq 4$  since  $G \not\cong S_n^{4,4}$ . By lemma 3,

$$b_4(G) = 2(b-2) + b(b-3)/2 - 2$$

and so

$$b_4(G) - b_4(S_n^{4,4}) = \frac{1}{2}(b^2 - 5b + 12) > 0.$$

If G does not contain quadrangles, then by lemma 3

$$b_4(G) = m(G, 2) = 2(a + b - 6) + m(C_{a+b-4}, 2)$$

and so

$$b_4(G) - b_4(S_n^{4,4}) = \frac{1}{2}[(a+b)^2 - 13(a+b) + 52)] > 0.$$

Subcase 2.4.  $t \ge 3$ . Note that  $a, b \ge 2t$ . Then n = a + b - t - 1, by lemma 3

$$b_4(G) = m(G, 2)$$
  
=  $m(P_{t+1}, 2) + 2(a + b - 2t - 2)$   
+ $(t - 2)(a + b - 2t) + m(C_{a+b-2t}, 2)$ 

and so

$$b_4(G) - b_4(S_n^{4,4}) = \frac{1}{2}[(a+b)^2 - (2t+9)(a+b) + t^2 + 9t + 30]$$
  
=  $\frac{1}{2}[(a+b) - (t+3)][(a+b) - (t+6)] + 6 > 0.$ 

By combining subcases 2.1–2.4, we have shown that in case 2,  $b_4(G) > b_4(S_n^{4,4})$  if n - a - b + t = -1. Suppose that it is true for n - a - b + t < p  $(p \ge 0)$ , and that n - a - b + t = p. Then G must contain a pendant edges uv with v a pendant vertex. By lemma 2,

$$b_4(G) = b_4(G - v) + b_2(G - u - v),$$

$$b_4(S_n^{4,4}) = b_4(S_{n-1}^{4,4}) + b_2(K_{1,3}).$$

By induction hypothesis,  $b_4(G-v) \ge b_4(S_{n-1}^{4,4})$ . Since *G* does not contain  $K_4 - e$ ,  $b_2(G-u-v) > 3 = b_2(K_{1,3})$ . So  $b_4(G) > b_4(S_{a+b-t-1}^{4,4})$ . Now we have have shown that in case 2,  $b_4(G) > b_4(S_n^{4,4}) + 3n - 15$ .

By combining cases 1 and 2, and by lemma 4, this theorem follows.  $\Box$ 

Similarly, we have

**Lemma 6.** If  $G \in G(n)$  does not contain  $K_4 - e$ , and  $G \not\cong S_n^{4,4}, S_n^{\prime,4,4}$ , then  $G \succ S_n^{\prime,4,4}$ .

**Lemma 7.** If G contains  $K_4 - e$ , and  $G \cong S_n^{3,3}$ , then  $G \succ S_n^{3,3}$ .

*Proof.* We will show  $b_i(G) \ge b_i(S_n^{3,3})$  using induction on *n*. If n = 4, the theorem holds. Suppose it is true for n < p ( $p \ge 5$ ), and let n = p. Then G contains a pendant edge uv with pendant vertex v. By lemma 2,

$$b_i(G) = b_i(G - v) + b_{i-2}(G - u - v), b_i(S_n^{3,3}) = b_i(S_{n-1}^{3,3}) + b_{i-2}(P_3).$$

By induction hypothesis,  $b_i(G-v) \ge b_i(S_{n-1}^{3,3})$ . On the other hand,  $b_{i-2}(G-u-v) \ge b_{i-2}(P_3)$  since

$$b_{i-2}(G - u - v) = \begin{cases} 1, & i - 2 = 0, \\ > 2, & i - 2 = 2, \\ \ge 0, & \text{otherwise} \end{cases}$$

and

$$b_{i-2}(P_3) = \begin{cases} 1, & i-2 = 0, \\ 2, & i-2 = 2, \\ 0, & \text{otherwise.} \end{cases}$$

Thus  $b_i(G) \ge b_i(S_n^{3,3})$  holds for all *i*. Since  $G \not\cong S_n^{3,3}$ , from the above argument, we see that  $b_{i_0}(G) > b_{i_0}(S_n^{3,3})$  for some  $i_0$ . Now the theorem follows.

Similarly, we have

**Lemma 8.** If  $G \in G(n)$  contains  $K_4 - e$ , and  $G \cong S_n^{3,3}, S_n^{\prime 3,3}$ , then  $G \succ S_n^{\prime 3,3}$ .

**Lemma 9.**  $E(S_n^{\prime 4,4}) > E(S_n^{\prime 3,3}) > E(S_n^{4,4} > E(S_n^{3,3}))$  for  $n \ge 9$ .

*Proof.* Note that

$$\begin{split} \phi(S_n^{\prime 3,3},\lambda) &= \lambda^n - (n+1)\lambda^{n-2} - 4\lambda^{n-3} + (3n-13)\lambda^{n-4}, \\ \phi(S_n^{\prime 4,4},\lambda) &= \lambda^n - (n+1)\lambda^{n-2} + (4n-21)\lambda^{n-4}, \\ \phi(S_n^{3,3},\lambda) &= \lambda^n - (n+1)\lambda^{n-2} - 4\lambda^{n-3} + (2n-8)\lambda^{n-4}, \\ \phi(S_n^{4,4},\lambda) &= \lambda^n - (n+1)\lambda^{n-2} + (3n-15)\lambda^{n-4}. \end{split}$$

From equation (1), we have

$$E(S_n^{\prime 4,4}) - E(S_n^{\prime 3,3}) = \frac{1}{\pi} \int_0^{+\infty} \frac{1}{x^2} \ln \frac{[1 + (n+1)x^2 + (4n-21)x^4]^2}{[1 + (n+1)x^{-2} + (3n-13)x^4]^2 + 16x^6} dx.$$

Let

$$f(x) = [1 + (n+1)x^{2} + (4n-21)x^{4}]^{2}$$
  
-[1 + (n + 1)x^{-2} + (3n - 13)x^{4}]^{2} - 16x^{6}  
= (n - 8)(7n - 34)x^{8} + 2(n^{2} - 7n + 16)x^{6} + 2(n - 8)x^{4}.

Then f(x) > 0 for  $n \ge 9$ . So  $E(S_n^{\prime 4,4}) > E(S_n^{\prime 3,3})$ . Similarly, we may get  $E(S_n^{\prime 3,3}) > E(S_n^{\prime 4,4}) > E(S_n^{\prime 3,3})$ .

Combining lemmas 5–9, and using the increasing property (2) on the energy, we obtain the following main result of this paper.

**Theorem 1.**  $S_n^{3,3}$ ,  $S_n^{4,4}$ ,  $S_n'^{3,3}$  have, respectively, minimal, second-minimal and third-minimal energies in G(n).

### Acknowledgments

This work was supported by the National Natural Science Foundation (No. 10201009) and the Guangdong Provincial Natural Science Foundation (No. 021072) of China.

## References

- I. Gutman and O.E. Polansky, *Mathematicl Concepts in Organic Chemistry* (Springer -Verlag, Berlin, 1986).
- [2] I. Gutman, in: Algebraic Combinatorics and Applications, eds. A. Betten, A. Kohnert, R. Laue and A. Wassermann (Springer-Verlag, Berlin, 2001), pp. 196–211.
- [3] I. Gutman, Theoret. Chim. Acta (Berlin) 45 (1977) 79-87.
- [4] F.J. Zhang and H. Li, Discrete Appl. Math. 92 (1999) 71-84.
- [5] J. Rada and A. Tineo, Linear Algebra Appl. 372 (2003) 333-344.
- [6] G. Caporossi, D. Cvetković, I. Gutman and P. Hansen, J. Chem. Inf. Comput. Sci. 39 (1999) 984–996.
- [7] Y. Hou, J. Math. Chem. 29 (2001) 163-168.
- [8] Y. Hou, Linear Multilinear Algebra 49 (2001) 347-354.
- [9] D. Cvetkoić, M. Doob and H. Sachs, Spectra of Graphs-Theory and Applications (Academic Press, New York, 1980).
- [10] I. Gutman and N. Tronajstić, J. Chem. Phys. 64 (1976) 4921-4925.