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On bicyclic graphs with minimal energies
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The energy of a graph is defined as the sum of the absolute values of all the
eigenvalues of the graph. Let G(n) be the class of bicyclic graphs G on n vertices and
containing no disjoint odd cycles of lengths k and l with k + l ≡ 2 (mod 4). In this
paper, the graphs in G(n) with minimal, second-minimal and third-minimal energies are
determined.
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1. Introduction

Let G be a graph with n vertices and A(G) the adjacency matrix of G. The
characteristic polynomial of G is

φ(G, λ) = det(λI − A(G)) =
n∑

i=0

aiλ
n−i .

The roots λ1, λ2, . . . , λn of φ(G, λ) = 0 are called the eigenvalues of G. Since
A(G) is symmetric, all the eigenvalues of G are real.

The energy of G, denoted E(G), is then defined as E(G) = ∑n
i=0 |λi |. It is

known that [1] E(G) can be expressed as the Coulson integral formula

E(G) = 1
2π

∫ +∞
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 dx.

(1)

Since the energy of a graph can be used to approximate the total π -electron
energy of the molecule, it has been intensively studied. For a survey of the math-
ematical properties and results on E(G), see the recent review [2].
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Many results on the minimal energy have been obtained for various clas-
ses of graphs, (see, for example, [3–5]). In [6], Caporossi et al. gave the following
conjecture.

Conjecture 1. Connected graphs G with n � 6 vertices, n−1 � e � 2(n−2) edges
and minimum energy are star with e−n+1 additional edges all connected to the
same vertices for e � n + �(n − 7)/2�, and bipartite graphs with two vertices on
one side, one of which is connected to all vertices on the other side otherwise.

This conjecture is true when e = n − 1, 2(n − 1) [6, Theorem 1], and when
e = n [7]. In this paper, we consider the above conjecture for the case e = n + 1.

A connected graph with n vertices and e = n + 1 edges is called a bicyclic
graph. Let G(n) be the class of bicyclic graphs G with n vertices and containing
no disjoint odd cycles of lengths k and l with k + l ≡ 2 (mod 4). Let S3,3

n be
the graph formed by joining n − 4 pendant vertices to a vertex of degree three
of the K4 − e, and S4,4

n be the graph formed by joining n− 5 pendant vertices to
a vertex of degree three of the complete bipartite graph K2,3. Let S ′3,3

n , S ′4,4
n be,

respectively, the graph formed from S3,3
n , S4,4

n by moving a pendant edge to the
vertex of degree three. See figure 1 for these graphs. Hou [8] has reported that
S4,4

n has the minimal energy among all n-vertex connected bicyclic graphs with at
most one odd cycle. Note that the class of bicyclic graph with n vertices and at
most one odd cycle is a proper subset of G(n). In this paper, we show that S3,3

n ,
S4,4

n , S ′3,3
n have, respectively, minimal, second-minimal and third-minimal energies

in G(n).
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Figure 1. Graphs S3,3
n , S4,4

n , S ′3,3
n and S ′4,4

n .
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2. Main result

Let G be a graph with characteristic polynomial φ(G, λ) = ∑n
i=0 aiλ

n−i .
Sachs theorem states that [1,9] for i � 1,

ai =
∑

S∈Li

(−1)p(S)2c(S),

where Li denotes the set of Sachs graphs of G with i vertices, that is, the graphs
in which every component is either a K2 or a cycle, p(S) is the number of com-
ponents of S and c(S) is the number of cycles contained in S. In addition a0 = 1.
Let b2i(G) = (−1)ia2i and b2i+1(G) = (−1)ia2i+1 for 0 � i � �n/2�. Clearly,
b0(G) = 1 and b2(G) equals the number of edges of G.

A graph G contains H means that G contains a subgraph that is isomor-
phic to H .

Lemma 1. (i) If G ∈ G(n), then b2i(G) � 0 for 1 � i � �n/2�.
(ii) If G ∈ G(n) contains K4 − e, then b2i+1(G) � 0 for 1 � i � �n/2�.

Proof. Let Li be the set of Sachs graphs of G with i vertices. Let L
(1)
i be the

set of graphs with no cycles in Li , and L
(2)
i = Li \ L

(1)
i . Note that G ∈ G(n) has

exactly two or three distinct cycles, and at most two odd cycles.

(i) By Sachs theorem,

b2i(G) =
∑

S∈L2i

(−1)p(S)+i2c(S).

If G has at most one odd cycle, then [10] b2i(G) � 0. So we need only to
consider the case when G ∈ G(n) has exactly two odd cycles. If every S in
L2i has no cycles, then p(S) = i, b2k(G) = ∑

S∈L
(1)

2i
1 � 0. Suppose some

S0 in L2i contains at least one cycle Cs with length s. If s is odd, then S0

contains exactly two disjoint odd cycles with lengths, say, s and t . Since
G ∈ G(n), we have s + t ≡ 0 (mod 4), p(S)+ i = 2 + [2i − (s + t)]/2 + i ≡
0 (mod 2), and then

b2i(G) =
∑

S∈L
(1)

2i

1 + 4
∑

S∈L
(2)

2i

1 � 0.

If s is even, then it is easy to see that |L(1)

2i | � 2|L(2)

2i | and so

b2i(G) =
∑

S∈L
(1)

2i

1 +
∑

S∈L
(2)

2i

2(−1)s−1 � 0.
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(ii) If G ∈ G(n) contains K4 − e, then L
(1)

2i+1 = ∅, any S ∈ L
(2)

2i+1 must contain
a unique triangle, p(S) = 1 + (2i + 1 − 3)/2 = i, c(S) = 1, and so

b2i+1(G) = 2
∑

S∈L
(2)

2i+1

1 � 0.

In view of lemma 1, a quasi-order relation is introduced (see [3]).

(i) Let G1, G2 be the graphs of G(n) containing K4 − e. If bi(G1) � bi(G2)

holds for all i � 0, we say that G1 is not less than G2, written as G1 	
G2.

(ii) Let G1 be any graph in G(n), and G2 = S4,4
n . Similarly, we also write

G1 	 G2 = S4,4
n , if b2i(G1) � b2i(G2) holds for all i � 0.

In either case, if G1 	 G2 and there exists on i such that bi(G1) > bi(G2),
then we write G1 
 G2. Obvious, from (1) and lemma 1, we have the following
increasing property on E:

G1 
 G2 ⇒ E(G1) > E(G2). (2)

Lemma 2. Let G be a graph with n vertices and let uv be a pendant edge of G

with pendant vertex v. Then for 2 � i � n,

bi(G) = bi(G − v) + bi−2(G − u − v).

Proof. Since uv is a pendant edge of G with pendant vertex v, we have [9]

φ(G, λ) = λφ(G − v, λ) − φ(G − u − v, λ),

from which the result follows easily.

Let m(G, 2) be the number of 2-matchings of a graph G. Obviously,
m(Pn, 2) = (n − 2)(n − 3)/2 and m(Cn, 2) = n(n − 3)/2.

Lemma 3. Let G be any graph. Then b4(G) = m(G, 2)−2l, where l is the number
of quadrangles in G.

Proof. By Sachs theorem,

b4(G) =
∣∣∣∣∣
∑

S∈L4

(−1)p(S)2c(S)

∣∣∣∣∣ = m(G, 2) − 2l

since any S ∈ L4 is either 2K2 or a quadrangle.
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Lemma 4. Let G ∈ G(n). If b4(G) > b4(S
4,4
n ) = 3n − 15, then G 
 S4,4

n .

Proof. It is easy to see that b0(G) = b0(S
4,4
n ), b2(G) = b2(S

4,4
n ) = n+1, b4(S

4,4
n ) =

3n − 15, and bi(S
4,4
n ) = 0 for i = 1, 3 or i � 5. Since b4(G) > 3n − 15, we have

G 
 S4,4
n .

Lemma 5. If G ∈ G(n) does not contain K4 − e and G �∼= S4,4
n , then G 
 S4,4

n .

Proof. Since G ∈ G(n), G has either two or three distinct cycles. If G has three
cycles, then any two must share common edges. We may choose two cycles of
lengths of a and b with t common edges such that a − t � t, b − t � t . If G

has exactly two cycles, suppose the lengths of the two cycles are a and b. Then
in any case we choose two cycles Ca and Cb with lengths a and b, respectively.
We will prove that b4(G) > b4(S

4,4
n )(= 3n − 15).

Case 1. Ca and Cb have no common vertices. Then n−a−b � 0. By induc-
tion on n − a − b. If n − a − b = 0, then by lemma 3,

b4(G) � m(G, 2) − 4
= m(Ca, 2) + m(Cb, 2) + ab + (a + b − 4) − 4
= 1

2 [(a + b)2 − (a + b) − 16]

and so

b4(G) − (3n − 15) � 1
2
(n2 − 7n + 14) > 0.

It follows that b4(G) > 3n − 15.
Suppose it is true for all graphs in this case with n − a − b < p (p � 1),

and suppose n − a − b = p.
Subcase 1.1. There is no pendant edges in G. Then Ca connects Cb by a

path with length p + 1. By lemma 3,

b4(G) � m(G, 2) − 4
= m(Ca, 2) + m(Cb, 2) + m(Pp+2, 2) + (a − 2)(n + 1 − a) + 2(n − a)

+(b − 2)(n + 1 − a − b) + 2(n − a − b) − 4
= 1

2 [n2 − n + 2(a + b)2 − 16] + a − 4

and so

b4(G) − (3n − 15) � 1
2

[n2 − 7n + 2(a + b)2 + 2a + 6] > 0

and hence b4(G) > 3n − 15.
Subcase 1.2. uv is a pendant edge of G with pendant vertex v. By lemma 2,

b4(G) = b4(G − v) + b2(G − u − v),

b4(S
4,4
n ) = b4(S

4,4
n−1) + b2(K1,3).
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By induction hypothesis, b4(G−v) � b4(S
4,4
n−1). Since G contains no K4−e, b2(G−

u − v) > 3 = b2(K1,3). We have b4(G) > b4(S
4,4
n ) = 3n − 15.

By combining subcases 1.1 and 1.2, we have prove that in case 1, b4(G) >

b4(S
4,4
n ) = 3n − 15.
Case 2. Ca and Cb have at least one common vertex and t (t � 0) common

edges. Then n − a − b + t � −1. We use induction on n − a − b + t .
If n−a −b+ t = −1, then G contains no vertices except vertices in the two

cycles. There are four subcases.
Subcase 2.1. t = 0. Then n = a + b − 1. By lemma 3

b4(G) � m(G, 2) − 4
= m(Ca, 2) + m(Cb, 2) + a(b − 2) + 2(a − 2) − 4
= 1

2 [(a + b)2 − 3(a + b) − 16]

and since a + b � 6, we have

b4(G) − (3n − 15) � 1
2

[(a + b)2 − 9(a + b) + 20] > 0.

Subcase 2.2. t = 1. Then n = a + b − 2. If G contains quadrangles, then
either n = 6,

b4(G) = 7 > 3 = b4(S
4,4
6 )

or n = b + 2, b �= 4,

b4(G) = b − 2 + 1
2(b + 2)(b − 1) − 2

> 3(b + 2) − 15
= b4(S

4,4
b+2, 2).

Suppose G does not contain quadrangles. By lemma 3,

b4(G) = m(G, 2)

= a + b − 6 + m(Ca+b−2, 2),

= a + b − 6 + 1
2 [(a + b − 2)(a + b − 5)].

Note that G does not contain quadrangles or K4 − e. We have a + b � 6 and hence

b4(G) − (3n − 15) = 1
2

[(a + b)2 − 11(a + b) + 40] > 0.

Subcase 2.3. t = 2. Then n = a + b − 3. If G contains a quadrangle, let
a = 4. Then b �= 4 since G �∼= S4,4

n . By lemma 3,

b4(G) = 2(b − 2) + b(b − 3)/2 − 2

and so

b4(G) − b4(S
4,4
n ) = 1

2
(b2 − 5b + 12) > 0.
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If G does not contain quadrangles, then by lemma 3

b4(G) = m(G, 2) = 2(a + b − 6) + m(Ca+b−4, 2)

and so

b4(G) − b4(S
4,4
n ) = 1

2
[(a + b)2 − 13(a + b) + 52)] > 0.

Subcase 2.4. t � 3. Note that a, b � 2t . Then n = a +b− t −1, by lemma 3

b4(G) = m(G, 2)

= m(Pt+1, 2) + 2(a + b − 2t − 2)

+(t − 2)(a + b − 2t) + m(Ca+b−2t , 2)

and so

b4(G) − b4(S
4,4
n ) = 1

2
[(a + b)2 − (2t + 9)(a + b) + t2 + 9t + 30]

= 1
2

[(a + b) − (t + 3)][(a + b) − (t + 6)] + 6 > 0.

By combining subcases 2.1–2.4, we have shown that in case 2, b4(G) >

b4(S
4,4
n ) if n − a − b + t = −1. Suppose that it is true for n − a − b + t < p

(p � 0), and that n − a − b + t = p. Then G must contain a pendant edges uv

with v a pendant vertex. By lemma 2,

b4(G) = b4(G − v) + b2(G − u − v),

b4(S
4,4
n ) = b4(S

4,4
n−1) + b2(K1,3).

By induction hypothesis, b4(G− v) � b4(S
4,4
n−1). Since G does not contain K4 − e,

b2(G−u−v) > 3 = b2(K1,3). So b4(G) > b4(S
4,4
a+b−t−1). Now we have have shown

that in case 2, b4(G) > b4(S
4,4
n ) + 3n − 15.

By combining cases 1 and 2, and by lemma 4, this theorem follows.

Similarly, we have

Lemma 6. If G ∈ G(n) does not contain K4 − e, and G �∼= S4,4
n , S ′4,4

n , then
G 
 S ′4,4

n .

Lemma 7. If G contains K4 − e, and G �∼= S3,3
n , then G 
 S3,3

n .
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Proof. We will show bi(G) � bi(S
3,3
n ) using induction on n. If n = 4, the theo-

rem holds. Suppose it is true for n < p (p � 5), and let n = p. Then G contains
a pendant edge uv with pendant vertex v. By lemma 2,

bi(G) = bi(G − v) + bi−2(G − u − v),

bi(S
3,3
n ) = bi(S

3,3
n−1) + bi−2(P3).

By induction hypothesis, bi(G−v) � bi(S
3,3
n−1). On the other hand, bi−2(G−u−v)

� bi−2(P3) since

bi−2(G − u − v) =






1, i − 2 = 0,

> 2, i − 2 = 2,

� 0, otherwise

and

bi−2(P3) =






1, i − 2 = 0,

2, i − 2 = 2,

0, otherwise.

Thus bi(G) � bi(S
3,3
n ) holds for all i. Since G �∼= S3,3

n , from the above argument,
we see that bi0(G) > bi0(S

3,3
n ) for some i0. Now the theorem follows.

Similarly, we have

Lemma 8. If G ∈ G(n) contains K4 − e, and G �∼= S3,3
n , S ′3,3

n , then G 
 S ′3,3
n .

Lemma 9. E(S ′4,4
n ) > E(S ′3,3

n ) > E(S4,4
n > E(S3,3

n ) for n � 9.

Proof. Note that

φ(S ′3,3
n , λ) = λn − (n + 1)λn−2 − 4λn−3 + (3n − 13)λn−4,

φ(S ′4,4
n , λ) = λn − (n + 1)λn−2 + (4n − 21)λn−4,

φ(S3,3
n , λ) = λn − (n + 1)λn−2 − 4λn−3 + (2n − 8)λn−4,

φ(S4,4
n , λ) = λn − (n + 1)λn−2 + (3n − 15)λn−4.

From equation (1), we have

E(S ′4,4
n ) − E(S ′3,3

n ) = 1
π

+∞∫

0

1
x2

ln
[1 + (n + 1)x2 + (4n − 21)x4]2

[1 + (n + 1)x−2 + (3n − 13)x4]2 + 16x6
dx.

Let

f (x) = [1 + (n + 1)x2 + (4n − 21)x4]2

−[1 + (n + 1)x−2 + (3n − 13)x4]2 − 16x6

= (n − 8)(7n − 34)x8 + 2(n2 − 7n + 16)x6 + 2(n − 8)x4.
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Then f (x) > 0 for n � 9. So E(S ′4,4
n ) > E(S ′3,3

n ). Similarly, we may get E(S ′3,3
n ) >

E(S4,4
n ) > E(S3,3

n ).

Combining lemmas 5–9, and using the increasing property (2) on the
energy, we obtain the following main result of this paper.

Theorem 1. S3,3
n , S4,4

n , S ′3,3
n have, respectively, minimal, second-minimal and third-

minimal energies in G(n).
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