On bicyclic graphs with minimal energies

Jianbin Zhang and Bo Zhou*
Department of Mathematics, South China Normal University,
Guangzhou 510631, People's Republic of China
E-mail: zhoubo@scnu.edu.cn

Received 13 September 2004; revised 27 September 2004

Abstract

The energy of a graph is defined as the sum of the absolute values of all the eigenvalues of the graph. Let $G(n)$ be the class of bicyclic graphs G on n vertices and containing no disjoint odd cycles of lengths k and l with $k+l \equiv 2(\bmod 4)$. In this paper, the graphs in $G(n)$ with minimal, second-minimal and third-minimal energies are determined.

KEY WORDS: energy, bicyclic graph, characteristic polynomial, eigenvalue
AMS subject classification: $05 \mathrm{C} 50,05 \mathrm{C} 35$

1. Introduction

Let G be a graph with n vertices and $A(G)$ the adjacency matrix of G. The characteristic polynomial of G is

$$
\phi(G, \lambda)=\operatorname{det}(\lambda I-A(G))=\sum_{i=0}^{n} a_{i} \lambda^{n-i}
$$

The roots $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ of $\phi(G, \lambda)=0$ are called the eigenvalues of G. Since $A(G)$ is symmetric, all the eigenvalues of G are real.

The energy of G, denoted $E(G)$, is then defined as $E(G)=\sum_{i=0}^{n}\left|\lambda_{i}\right|$. It is known that [1] $E(G)$ can be expressed as the Coulson integral formula

$$
\begin{equation*}
E(G)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} \frac{1}{x^{2}} \ln \left[\left(\sum_{i=0}^{\lfloor n / 2\rfloor}(-1)^{i} a_{2 i} x^{2 i}\right)^{2}+\left(\sum_{j=0}^{\lfloor n / 2\rfloor}(-1)^{i} a_{2 i+1} x^{2 i+1}\right)^{2}\right] \mathrm{d} x \tag{1}
\end{equation*}
$$

Since the energy of a graph can be used to approximate the total π-electron energy of the molecule, it has been intensively studied. For a survey of the mathematical properties and results on $E(G)$, see the recent review [2].

[^0]Many results on the minimal energy have been obtained for various classes of graphs, (see, for example, [3-5]). In [6], Caporossi et al. gave the following conjecture.

Conjecture 1. Connected graphs G with $n \geqslant 6$ vertices, $n-1 \leqslant e \leqslant 2(n-2)$ edges and minimum energy are star with $e-n+1$ additional edges all connected to the same vertices for $e \leqslant n+\lfloor(n-7) / 2\rfloor$, and bipartite graphs with two vertices on one side, one of which is connected to all vertices on the other side otherwise.

This conjecture is true when $e=n-1,2(n-1)$ [6, Theorem 1], and when $e=n$ [7]. In this paper, we consider the above conjecture for the case $e=n+1$.

A connected graph with n vertices and $e=n+1$ edges is called a bicyclic graph. Let $G(n)$ be the class of bicyclic graphs G with n vertices and containing no disjoint odd cycles of lengths k and l with $k+l \equiv 2(\bmod 4)$. Let $S_{n}^{3,3}$ be the graph formed by joining $n-4$ pendant vertices to a vertex of degree three of the $K_{4}-e$, and $S_{n}^{4,4}$ be the graph formed by joining $n-5$ pendant vertices to a vertex of degree three of the complete bipartite graph $K_{2,3}$. Let $S_{n}^{\prime 3,3}, S_{n}^{\prime 4,4}$ be, respectively, the graph formed from $S_{n}^{3,3}, S_{n}^{4,4}$ by moving a pendant edge to the vertex of degree three. See figure 1 for these graphs. Hou [8] has reported that $S_{n}^{4,4}$ has the minimal energy among all n-vertex connected bicyclic graphs with at most one odd cycle. Note that the class of bicyclic graph with n vertices and at most one odd cycle is a proper subset of $G(n)$. In this paper, we show that $S_{n}^{3,3}$, $S_{n}^{4,4}, S_{n}^{\prime 3,3}$ have, respectively, minimal, second-minimal and third-minimal energies in $G(n)$.

Figure 1. Graphs $S_{n}^{3,3}, S_{n}^{4,4}, S_{n}^{3,3}$ and $S_{n}^{1,4,}$.

2. Main result

Let G be a graph with characteristic polynomial $\phi(G, \lambda)=\sum_{i=0}^{n} a_{i} \lambda^{n-i}$. Sachs theorem states that $[1,9]$ for $i \geqslant 1$,

$$
a_{i}=\sum_{S \in L_{i}}(-1)^{p(S)} 2^{c(S)}
$$

where L_{i} denotes the set of Sachs graphs of G with i vertices, that is, the graphs in which every component is either a K_{2} or a cycle, $p(S)$ is the number of components of S and $c(S)$ is the number of cycles contained in S. In addition $a_{0}=1$. Let $b_{2 i}(G)=(-1)^{i} a_{2 i}$ and $b_{2 i+1}(G)=(-1)^{i} a_{2 i+1}$ for $0 \leqslant i \leqslant\lfloor n / 2\rfloor$. Clearly, $b_{0}(G)=1$ and $b_{2}(G)$ equals the number of edges of G.

A graph G contains H means that G contains a subgraph that is isomorphic to H.

Lemma 1. (i) If $G \in G(n)$, then $b_{2 i}(G) \geqslant 0$ for $1 \leqslant i \leqslant\lfloor n / 2\rfloor$.
(ii) If $G \in G(n)$ contains $K_{4}-e$, then $b_{2 i+1}(G) \geqslant 0$ for $1 \leqslant i \leqslant\lfloor n / 2\rfloor$.

Proof. Let L_{i} be the set of Sachs graphs of G with i vertices. Let $L_{i}^{(1)}$ be the set of graphs with no cycles in L_{i}, and $L_{i}^{(2)}=L_{i} \backslash L_{i}^{(1)}$. Note that $G \in G(n)$ has exactly two or three distinct cycles, and at most two odd cycles.
(i) By Sachs theorem,

$$
b_{2 i}(G)=\sum_{S \in L_{2 i}}(-1)^{p(S)+i} 2^{c(S)}
$$

If G has at most one odd cycle, then [10] $b_{2 i}(G) \geqslant 0$. So we need only to consider the case when $G \in G(n)$ has exactly two odd cycles. If every S in $L_{2 i}$ has no cycles, then $p(S)=i, b_{2 k}(G)=\sum_{S \in L_{2 i}^{(1)}} 1 \geqslant 0$. Suppose some S_{0} in $L_{2 i}$ contains at least one cycle C_{s} with length s. If s is odd, then S_{0} contains exactly two disjoint odd cycles with lengths, say, s and t. Since $G \in G(n)$, we have $s+t \equiv 0(\bmod 4), p(S)+i=2+[2 i-(s+t)] / 2+i \equiv$ $0(\bmod 2)$, and then

$$
b_{2 i}(G)=\sum_{S \in L_{2 i}^{(1)}} 1+4 \sum_{S \in L_{2 i}^{(2)}} 1 \geqslant 0
$$

If s is even, then it is easy to see that $\left|L_{2 i}^{(1)}\right| \geqslant 2\left|L_{2 i}^{(2)}\right|$ and so

$$
b_{2 i}(G)=\sum_{S \in L_{2 i}^{(1)}} 1+\sum_{S \in L_{2 i}^{(2)}} 2(-1)^{s-1} \geqslant 0
$$

(ii) If $G \in G(n)$ contains $K_{4}-e$, then $L_{2 i+1}^{(1)}=\emptyset$, any $S \in L_{2 i+1}^{(2)}$ must contain a unique triangle, $p(S)=1+(2 i+1-3) / 2=i, c(S)=1$, and so

$$
b_{2 i+1}(G)=2 \sum_{S \in L_{2 i+1}^{(2)}} 1 \geqslant 0
$$

In view of lemma 1, a quasi-order relation is introduced (see [3]).
(i) Let G_{1}, G_{2} be the graphs of $G(n)$ containing $K_{4}-e$. If $b_{i}\left(G_{1}\right) \geqslant b_{i}\left(G_{2}\right)$ holds for all $i \geqslant 0$, we say that G_{1} is not less than G_{2}, written as $G_{1} \succeq$ G_{2}.
(ii) Let G_{1} be any graph in $G(n)$, and $G_{2}=S_{n}^{4,4}$. Similarly, we also write $G_{1} \succeq G_{2}=S_{n}^{4,4}$, if $b_{2 i}\left(G_{1}\right) \geqslant b_{2 i}\left(G_{2}\right)$ holds for all $i \geqslant 0$.
In either case, if $G_{1} \succeq G_{2}$ and there exists on i such that $b_{i}\left(G_{1}\right)>b_{i}\left(G_{2}\right)$, then we write $G_{1} \succ G_{2}$. Obvious, from (1) and lemma 1, we have the following increasing property on E :

$$
\begin{equation*}
G_{1} \succ G_{2} \Rightarrow E\left(G_{1}\right)>E\left(G_{2}\right) \tag{2}
\end{equation*}
$$

Lemma 2. Let G be a graph with n vertices and let $u v$ be a pendant edge of G with pendant vertex v. Then for $2 \leqslant i \leqslant n$,

$$
b_{i}(G)=b_{i}(G-v)+b_{i-2}(G-u-v) .
$$

Proof. Since $u v$ is a pendant edge of G with pendant vertex v, we have [9]

$$
\phi(G, \lambda)=\lambda \phi(G-v, \lambda)-\phi(G-u-v, \lambda),
$$

from which the result follows easily.

Let $m(G, 2)$ be the number of 2-matchings of a graph G. Obviously, $m\left(P_{n}, 2\right)=(n-2)(n-3) / 2$ and $m\left(C_{n}, 2\right)=n(n-3) / 2$.

Lemma 3. Let G be any graph. Then $b_{4}(G)=m(G, 2)-2 l$, where l is the number of quadrangles in G.

Proof. By Sachs theorem,

$$
b_{4}(G)=\left|\sum_{S \in L_{4}}(-1)^{p(S)} 2^{c(S)}\right|=m(G, 2)-2 l
$$

since any $S \in L_{4}$ is either $2 K_{2}$ or a quadrangle.

Lemma 4. Let $G \in G(n)$. If $b_{4}(G)>b_{4}\left(S_{n}^{4,4}\right)=3 n-15$, then $G \succ S_{n}^{4,4}$.
Proof. It is easy to see that $b_{0}(G)=b_{0}\left(S_{n}^{4,4}\right), b_{2}(G)=b_{2}\left(S_{n}^{4,4}\right)=n+1, b_{4}\left(S_{n}^{4,4}\right)=$ $3 n-15$, and $b_{i}\left(S_{n}^{4,4}\right)=0$ for $i=1,3$ or $i \geqslant 5$. Since $b_{4}(G)>3 n-15$, we have $G \succ S_{n}^{4,4}$.

Lemma 5. If $G \in G(n)$ does not contain $K_{4}-e$ and $G \not \approx S_{n}^{4,4}$, then $G \succ S_{n}^{4,4}$.
Proof. Since $G \in G(n), G$ has either two or three distinct cycles. If G has three cycles, then any two must share common edges. We may choose two cycles of lengths of a and b with t common edges such that $a-t \geqslant t, b-t \geqslant t$. If G has exactly two cycles, suppose the lengths of the two cycles are a and b. Then in any case we choose two cycles C_{a} and C_{b} with lengths a and b, respectively. We will prove that $b_{4}(G)>b_{4}\left(S_{n}^{4,4}\right)(=3 n-15)$.

Case 1. C_{a} and C_{b} have no common vertices. Then $n-a-b \geqslant 0$. By induction on $n-a-b$. If $n-a-b=0$, then by lemma 3 ,

$$
\begin{aligned}
b_{4}(G) & \geqslant m(G, 2)-4 \\
& =m\left(C_{a}, 2\right)+m\left(C_{b}, 2\right)+a b+(a+b-4)-4 \\
& =\frac{1}{2}\left[(a+b)^{2}-(a+b)-16\right]
\end{aligned}
$$

and so

$$
b_{4}(G)-(3 n-15) \geqslant \frac{1}{2}\left(n^{2}-7 n+14\right)>0
$$

It follows that $b_{4}(G)>3 n-15$.
Suppose it is true for all graphs in this case with $n-a-b<p(p \geqslant 1)$, and suppose $n-a-b=p$.

Subcase 1.1. There is no pendant edges in G. Then C_{a} connects C_{b} by a path with length $p+1$. By lemma 3,

$$
\begin{aligned}
b_{4}(G) \geqslant & m(G, 2)-4 \\
= & m\left(C_{a}, 2\right)+m\left(C_{b}, 2\right)+m\left(P_{p+2}, 2\right)+(a-2)(n+1-a)+2(n-a) \\
& +(b-2)(n+1-a-b)+2(n-a-b)-4 \\
= & \frac{1}{2}\left[n^{2}-n+2(a+b)^{2}-16\right]+a-4
\end{aligned}
$$

and so

$$
b_{4}(G)-(3 n-15) \geqslant \frac{1}{2}\left[n^{2}-7 n+2(a+b)^{2}+2 a+6\right]>0
$$

and hence $b_{4}(G)>3 n-15$.
Subcase 1.2. $u v$ is a pendant edge of G with pendant vertex v. By lemma 2,

$$
\begin{aligned}
& b_{4}(G)=b_{4}(G-v)+b_{2}(G-u-v) \\
& b_{4}\left(S_{n}^{4,4}\right)=b_{4}\left(S_{n-1}^{4,4}\right)+b_{2}\left(K_{1,3}\right)
\end{aligned}
$$

By induction hypothesis, $b_{4}(G-v) \geqslant b_{4}\left(S_{n-1}^{4,4}\right)$. Since G contains no $K_{4}-e, b_{2}(G-$ $u-v)>3=b_{2}\left(K_{1,3}\right)$. We have $b_{4}(G)>b_{4}\left(S_{n}^{4,4}\right)=3 n-15$.

By combining subcases 1.1 and 1.2 , we have prove that in case $1, b_{4}(G)>$ $b_{4}\left(S_{n}^{4,4}\right)=3 n-15$.

Case 2. C_{a} and C_{b} have at least one common vertex and $t(t \geqslant 0)$ common edges. Then $n-a-b+t \geqslant-1$. We use induction on $n-a-b+t$.

If $n-a-b+t=-1$, then G contains no vertices except vertices in the two cycles. There are four subcases.

Subcase 2.1. $t=0$. Then $n=a+b-1$. By lemma 3

$$
\begin{aligned}
b_{4}(G) & \geqslant m(G, 2)-4 \\
& =m\left(C_{a}, 2\right)+m\left(C_{b}, 2\right)+a(b-2)+2(a-2)-4 \\
& =\frac{1}{2}\left[(a+b)^{2}-3(a+b)-16\right]
\end{aligned}
$$

and since $a+b \geqslant 6$, we have

$$
b_{4}(G)-(3 n-15) \geqslant \frac{1}{2}\left[(a+b)^{2}-9(a+b)+20\right]>0 .
$$

Subcase 2.2. $t=1$. Then $n=a+b-2$. If G contains quadrangles, then either $n=6$,

$$
b_{4}(G)=7>3=b_{4}\left(S_{6}^{4,4}\right)
$$

or $n=b+2, b \neq 4$,

$$
\begin{aligned}
b_{4}(G) & =b-2+\frac{1}{2}(b+2)(b-1)-2 \\
& >3(b+2)-15 \\
& =b_{4}\left(S_{b+2}^{4,4}, 2\right) .
\end{aligned}
$$

Suppose G does not contain quadrangles. By lemma 3,

$$
\begin{aligned}
b_{4}(G) & =m(G, 2) \\
& =a+b-6+m\left(C_{a+b-2}, 2\right), \\
& =a+b-6+\frac{1}{2}[(a+b-2)(a+b-5)] .
\end{aligned}
$$

Note that G does not contain quadrangles or $K_{4}-e$. We have $a+b \geqslant 6$ and hence

$$
b_{4}(G)-(3 n-15)=\frac{1}{2}\left[(a+b)^{2}-11(a+b)+40\right]>0 .
$$

Subcase 2.3. $t=2$. Then $n=a+b-3$. If G contains a quadrangle, let $a=4$. Then $b \neq 4$ since $G \neq S_{n}^{4,4}$. By lemma 3,

$$
b_{4}(G)=2(b-2)+b(b-3) / 2-2
$$

and so

$$
b_{4}(G)-b_{4}\left(S_{n}^{4,4}\right)=\frac{1}{2}\left(b^{2}-5 b+12\right)>0 .
$$

If G does not contain quadrangles, then by lemma 3

$$
b_{4}(G)=m(G, 2)=2(a+b-6)+m\left(C_{a+b-4}, 2\right)
$$

and so

$$
\left.b_{4}(G)-b_{4}\left(S_{n}^{4,4}\right)=\frac{1}{2}\left[(a+b)^{2}-13(a+b)+52\right)\right]>0 .
$$

Subcase 2.4. $t \geqslant 3$. Note that $a, b \geqslant 2 t$. Then $n=a+b-t-1$, by lemma 3

$$
\begin{aligned}
b_{4}(G)= & m(G, 2) \\
= & m\left(P_{t+1}, 2\right)+2(a+b-2 t-2) \\
& +(t-2)(a+b-2 t)+m\left(C_{a+b-2 t}, 2\right)
\end{aligned}
$$

and so

$$
\begin{aligned}
b_{4}(G)-b_{4}\left(S_{n}^{4,4}\right) & =\frac{1}{2}\left[(a+b)^{2}-(2 t+9)(a+b)+t^{2}+9 t+30\right] \\
& =\frac{1}{2}[(a+b)-(t+3)][(a+b)-(t+6)]+6>0
\end{aligned}
$$

By combining subcases 2.1-2.4, we have shown that in case $2, b_{4}(G)>$ $b_{4}\left(S_{n}^{4,4}\right)$ if $n-a-b+t=-1$. Suppose that it is true for $n-a-b+t<p$ ($p \geqslant 0$), and that $n-a-b+t=p$. Then G must contain a pendant edges $u v$ with v a pendant vertex. By lemma 2,

$$
\begin{gathered}
b_{4}(G)=b_{4}(G-v)+b_{2}(G-u-v) \\
b_{4}\left(S_{n}^{4,4}\right)=b_{4}\left(S_{n-1}^{4,4}\right)+b_{2}\left(K_{1,3}\right)
\end{gathered}
$$

By induction hypothesis, $b_{4}(G-v) \geqslant b_{4}\left(S_{n-1}^{4,4}\right)$. Since G does not contain $K_{4}-e$, $b_{2}(G-u-v)>3=b_{2}\left(K_{1,3}\right)$. So $b_{4}(G)>b_{4}\left(S_{a+b-t-1}^{4,4}\right)$. Now we have have shown that in case $2, b_{4}(G)>b_{4}\left(S_{n}^{4,4}\right)+3 n-15$.

By combining cases 1 and 2, and by lemma 4, this theorem follows.
Similarly, we have
Lemma 6. If $G \in G(n)$ does not contain $K_{4}-e$, and $G \not \not S_{n}^{4,4}, S_{n}^{\prime 4,4}$, then $G \succ S_{n}^{\prime 4,4}$.

Lemma 7. If G contains $K_{4}-e$, and $G \not \equiv S_{n}^{3,3}$, then $G \succ S_{n}^{3,3}$.

Proof. We will show $b_{i}(G) \geqslant b_{i}\left(S_{n}^{3,3}\right)$ using induction on n. If $n=4$, the theorem holds. Suppose it is true for $n<p(p \geqslant 5)$, and let $n=p$. Then G contains a pendant edge $u v$ with pendant vertex v. By lemma 2,

$$
\begin{aligned}
& b_{i}(G)=b_{i}(G-v)+b_{i-2}(G-u-v), \\
& b_{i}\left(S_{n}^{3,3}\right)=b_{i}\left(S_{n-1}^{3,3}\right)+b_{i-2}\left(P_{3}\right) .
\end{aligned}
$$

By induction hypothesis, $b_{i}(G-v) \geqslant b_{i}\left(S_{n-1}^{3,3}\right)$. On the other hand, $b_{i-2}(G-u-v)$ $\geqslant b_{i-2}\left(P_{3}\right)$ since

$$
b_{i-2}(G-u-v)= \begin{cases}1, & i-2=0 \\ >2, & i-2=2 \\ \geqslant 0, & \text { otherwise }\end{cases}
$$

and

$$
b_{i-2}\left(P_{3}\right)= \begin{cases}1, & i-2=0 \\ 2, & i-2=2 \\ 0, & \text { otherwise }\end{cases}
$$

Thus $b_{i}(G) \geqslant b_{i}\left(S_{n}^{3,3}\right)$ holds for all i. Since $G \neq S_{n}^{3,3}$, from the above argument, we see that $b_{i_{0}}(G)>b_{i_{0}}\left(S_{n}^{3,3}\right)$ for some i_{0}. Now the theorem follows.

Similarly, we have
Lemma 8. If $G \in G(n)$ contains $K_{4}-e$, and $G \neq S_{n}^{3,3}, S_{n}^{\prime 3,3}$, then $G \succ S_{n}^{\prime 3,3}$.
Lemma 9. $E\left(S_{n}^{\prime 4,4}\right)>E\left(S_{n}^{\prime 3,3}\right)>E\left(S_{n}^{4,4}>E\left(S_{n}^{3,3}\right)\right.$ for $n \geqslant 9$.
Proof. Note that

$$
\begin{aligned}
& \phi\left(S_{n}^{\prime 3,3}, \lambda\right)=\lambda^{n}-(n+1) \lambda^{n-2}-4 \lambda^{n-3}+(3 n-13) \lambda^{n-4}, \\
& \phi\left(S_{n}^{\prime 4,4}, \lambda\right)=\lambda^{n}-(n+1) \lambda^{n-2}+(4 n-21) \lambda^{n-4}, \\
& \phi\left(S_{n}^{3,3}, \lambda\right)=\lambda^{n}-(n+1) \lambda^{n-2}-4 \lambda^{n-3}+(2 n-8) \lambda^{n-4}, \\
& \phi\left(S_{n}^{4,4}, \lambda\right)=\lambda^{n}-(n+1) \lambda^{n-2}+(3 n-15) \lambda^{n-4} .
\end{aligned}
$$

From equation (1), we have

$$
E\left(S_{n}^{\prime 4,4}\right)-E\left(S_{n}^{\prime 3,3}\right)=\frac{1}{\pi} \int_{0}^{+\infty} \frac{1}{x^{2}} \ln \frac{\left[1+(n+1) x^{2}+(4 n-21) x^{4}\right]^{2}}{\left[1+(n+1) x^{-2}+(3 n-13) x^{4}\right]^{2}+16 x^{6}} \mathrm{~d} x .
$$

Let

$$
\begin{aligned}
f(x)= & {\left[1+(n+1) x^{2}+(4 n-21) x^{4}\right]^{2} } \\
& -\left[1+(n+1) x^{-2}+(3 n-13) x^{4}\right]^{2}-16 x^{6} \\
= & (n-8)(7 n-34) x^{8}+2\left(n^{2}-7 n+16\right) x^{6}+2(n-8) x^{4} .
\end{aligned}
$$

Then $f(x)>0$ for $n \geqslant 9$. So $E\left(S_{n}^{\prime 4,4}\right)>E\left(S_{n}^{\prime 3,3}\right)$. Similarly, we may get $E\left(S_{n}^{\prime 3,3}\right)>$ $E\left(S_{n}^{4,4}\right)>E\left(S_{n}^{3,3}\right)$.

Combining lemmas $5-9$, and using the increasing property (2) on the energy, we obtain the following main result of this paper.

Theorem 1. $S_{n}^{3,3}, S_{n}^{4,4}, S_{n}^{\prime 3,3}$ have, respectively, minimal, second-minimal and thirdminimal energies in $G(n)$.

Acknowledgments

This work was supported by the National Natural Science Foundation (No. 10201009) and the Guangdong Provincial Natural Science Foundation (No. 021072) of China.

References

[1] I. Gutman and O.E. Polansky, Mathematicl Concepts in Organic Chemistry (Springer -Verlag, Berlin, 1986).
[2] I. Gutman, in: Algebraic Combinatorics and Applications, eds. A. Betten, A. Kohnert, R. Laue and A. Wassermann (Springer-Verlag, Berlin, 2001), pp. 196-211.
[3] I. Gutman, Theoret. Chim. Acta (Berlin) 45 (1977) 79-87.
[4] F.J. Zhang and H. Li, Discrete Appl. Math. 92 (1999) 71-84.
[5] J. Rada and A. Tineo, Linear Algebra Appl. 372 (2003) 333-344.
[6] G. Caporossi, D. Cvetković, I. Gutman and P. Hansen, J. Chem. Inf. Comput. Sci. 39 (1999) 984-996.
[7] Y. Hou, J. Math. Chem. 29 (2001) 163-168.
[8] Y. Hou, Linear Multilinear Algebra 49 (2001) 347-354.
[9] D. Cvetkoić, M. Doob and H. Sachs, Spectra of Graphs-Theory and Applications (Academic Press, New York, 1980).
[10] I. Gutman and N. Tronajstić, J. Chem. Phys. 64 (1976) 4921-4925.

[^0]: *Corresponding author.

